

森 修一¹,濱田純一¹,村田文絵²,櫻井南海子³,山中大学^{1,3} (1地球観測フロンティア,2京大防災研,3神戸大院・自然科学

アジアにおけるメソスケール擾乱の多様性」研究集会 コナ防災研 Ian 26-27 2004

テーマ

熱帯における最も基本的な擾乱モードである対流活動の 日周期,およびその地理的差異,降水システムの特徴と 環境場との関係を探る.

<u>1. スマトラ島周辺における降水日周期変化</u>

2. 海岸線から進出する降水ピークの日周期海陸間移動

<u>4. 集中ゾンデ観測期間中における事例解析</u>

5. 考察とまとめ

TRMM PR で観た降水日周期変化

明雨(00-11LT)と夕立(12-23LT)の差.暖色は朝雨,夕立は夕立が多い事を示す

TRMMPRで観た降水日変化の地理的差異

TRMM PR で観た3時間降水量の地域変化

TRMM PRで観たスマトラ島スケールの降水日変化

20

110F

20

110E

110F

スマトラ島南西海岸線からの降水ピーク海陸間移動 TRMM 3G68 Annual Mean 1998-2000 12 15 \bigcirc 18 (LT)21 time 24 Local 対流性降雨の割合(%) 03 06 12 TRMM 3668 Annual Mean 1998-2000 -09 15 12 1 0 600 1400 200 4**0**0 800 1000 1200 1600 1800 2000 2200 В А Distance (km) Sumatera Island 21 0.1 0.6 0.12 0.18 0.2 0.25 0.3 0.35 0.4 0.15 0.5 0.55 Total rain rate (mm/h) 24 03 インド洋 06 スマトラ島 09 12+ 600 1200 2000 2200 200 400 8**0**0 1000 1400 1600 1800 В А Distance (km) 👌 Sumatera Island 🧲

45

40

50

55

60

65

70

75

12 TRMM 3G68 Annual Mean 1998-2000 TRMM 3G68 Annual Mean 1998-2000 12

降水システムの海陸間差異

事例解析2001年11月 NCEP Reanalysis & OLR

65 | 90E

95E

100E

105E

110E

6S | 90E

95E

10⁰E

Longitude

10⁵E

11⁰E

94E 96E 98E 100E 102E 104E 106E 108E 110E

225 230 235 240 245 250

92F

100E 102E 104E 106E

028

248

240

大規模収束場(NCEP Reanalysis)

Frontier Observ

Intensive rawinsonde observation data

<u>降水ピーク移動と局地循環系の模式図</u>

- E: Upper easterly flow (Over 8 km high)
- W: Westerly monsoon flow (Between 1 - 8 km high)
- C: Local convergent flow (Between 2 - 3 km high
- L: Land breeze (Below 1 km high)
- S: Sea breeze (Below 1 km high)

1. インドネシア,特にスマトラ島周辺における降水日周期変化を TRMM PR,集中ゾンデ観測データ等を用いて調べた.

考察とまとめ

- 2. 南西海岸線から, 夜間はインド洋側, 昼間に島内陸側に各々約 400km進む降水ピークの移動を観ることがでできた. その移動 速度は約10m/sであった.また, 内陸部と沿岸海域では降水シ ステム(降水タイプの構成)に大きな差異があった.
- 内陸および沿岸における集中ゾンデ観測から、上空2-3kmには 顕著な日周期の東西風循環が現れており、地上降水のピーク 時間を中心とした風向シフトを示していた、いずれの風向シフト も、降水ピークをもたらす対流中心に対して収束する気流場を 示していた、
- 5. 降水ピークの海陸間移動と局地循環の概念的な関係を提案したが, (特に海上側の)移動メカニズムおよび(特に沿岸海域の)降水システムの構造は今後の課題である.

X-band レーダー画像(ただし2002年11月)

01R* 116 EVENTS) 1975-85

Fig. 19. Schematic picture when convective systems propagate along the equator from the Indian Ocean to the western Pacific. Light shaded regions denote convective regions and arrows indicate low-level winds.

(Nitta et al., JMSJ, 1992)

東インド洋からスマトラ島付近におけるISV弱化メカニズム?

144

大気観測を含む先行研究プロジェクト: INDOEX(1970s), JASMINE(1999),

13.8

64

(Rui and Wang, JAS, 1990)

BLE* 138 EVENTS1 1875-65

航海観測(MR02-K04, MR03-K03)の概要

MR02-K04 **MR03-K03** OLR JUL-AUG 2002 LAT/5.0S-5.0N OLR JUN11-AUG11 2003 LAT/5.0S-5.0N JUL2002 11JUN2003 JUL2002 16JUN2003 JUL2002 21JUN2003 JUL2002 26JUN2003 JUL2002 1JUL2003 JUL2002 6JUL2003 ⊢ ∢ 11JUL2003 UG2002 \square 16JUL2003 UG2002 21JUL2003 UG2002 26JUL2003 UG2002 UG2002 1AUG2003 UG2002 6AUG2003 11AUG2003 |--- 70E SEP2002 + 70E 75E 80E 85E 100E 10⁵E 75E 8ÖE 85E 90F 95E 100E 10⁵E 90E 95E 110E OLR (Wm⁻²) $OLR (Wm^{-2})$

両航海観測期間の比較:OLRで観た季節内振動

210

200

170

180

190

230

220

200

210

170

180

190

230

MR03-K03における降水・ゾンデ観測日周期変化

MR03-K03:ドップラーレーダーPPI (2003年7月15日)

Frontier Observ